**References**

Aanonsen, S.I., Nævdal, G., Oliver, D.S. et al. 2009. The Ensemble Kalman Filter in Reservoir Engineering—A Review. *SPE J.* **14** (3):393-412. http://dx.doi.org/10.2118/117274-PA.

Agbalaka, C. and Oliver, D.S. 2008. Application of the EnKF and Localization to Automatic History Matching of Facies Distribution and Production Data.* Math. Geosci.* **40.**

Anderson, J.L. 2007. Exploring the Need for Localization in Ensemble Data Assimilation Using a Hierarchical Ensemble Filter. *Physica D: Nonlinear Phenomena* **230** (1-2): 99-111.

Borg, I. and Groenen, P. 1997. *Modern Multidimensional Scaling: Theory and Applications.* New York: Springer.

Chang, H., Zhang, D., and Lu, Z. 2010. History Matching of Facies Distribution With the EnkF and Level Set Parameterization. *J. Computational Physics* **229** (20): 8011-8030.

Dovera, L. and Rossa, E.D. 2011. Multimodal Ensemble Kalman Filtering Using Gaussian Mixture Models. *Computational Geosci.* **15** (2):307-323.

Emerick, A. and Reynolds, A. 2010. Combining Sensitivities and Prior Information for Covariance Localization in the Ensemble Kalman Filter for Petroleum Reservoir Applications. *Computational Geosci.* **15**(2): 251-269.

Evensen, G. 1994. Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics.*J. Geophysical Research* **99** (C5): 10143-10162.

Evensen, G. 2005. The Combined Parameter and State Problem. In *TechnicalReport.* Norsk Hydro Research Center.

Evensen, G. 2007. *Data Assimilation: The Ensemble Kalman Filter.* NewYork: Springer.

Evensen, G. 2009. The Ensemble Kalman Filter for Combined State and Parameter Estimation. *IEEE Control Systems Magazine* **29** (3):83-104.

Evensen, G., Hove, J., Meisingset, H.C. et al. 2007. Using the EnKF for Assisted History Matching of a North Sea Reservoir Model (SPE 106184). In *Proceedings of the 2007 SPE Reservoir Simulation Symposium.*

Gao, G., Zafari, M., and Reynolds, A.C. 2006. Quantifying Uncertainty for the PUNQ-S3 Problem in a Bayesian Setting With RML and Enkf. *SPE J.* **11** (4): 506-515.

Gu, Y. and Oliver, D.S. 2005. History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter. *SPE J.* **10** (2):51-65.

Honarkhah, M. and Caers, J. 2010. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. *Math. Geosci.* **42** (5):487-517.

Houtekamer, P.L. and Mitchell, H.L. 2001. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation. *Monthly Weather Review* **129** (1): 123-137.

Jafarpour, B. and Khodabakhshi, M. 2011. A Probability Conditioning Method(PCM) for Nonlinear Flow Data Integration Into Multiple-Point Statistical Facies Simulation. *Math. Geosci.* **43** (2): 133-164. http://dx.doi.org/10.1007/s11004-011-9316-y.

Jafarpour, B. and McLaughlin, D.B. 2009. Estimating Channelized Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design. *SPE J.* **14** (2): 374-388.

Kalman, R.E. 1960. A New Approach to Linear Filtering and Prediction Problems. *Trans.* *of the ASME, J. Basic Eng.* **82:**35-45.

Kohonen, T. 1984. *Self-Organization and Associative Memory (2ndedition).* Berlin: Springer-Verlag.

Kruskal, J. and Wish, M. 1978. Multidimensional Scaling. In *Sage University Paper Series on Quantitative Applications in the Social Sciences *(07-011).

Liu, N. and Oliver, D.S. 2005. Ensemble Kalman Filter for Automatic History Matching of Geologic Facies. *J. Petrol. Sci. Eng.* **47** (3-4):147-161.

MacQueen, J.B. 1967. Some Methods for Classification and Analysis of Multivariate Observations. In *Proceedings* *of 5th Berkeley Symposiumon Mathematical Statistics and Probability,* 281-297.

Mariethoz, G., Renard, O., and Straubhaar, J. 2010. The Direct Sampling Method to Perform Multiple-Point Geostatistical Simulations. *Water Resources Research* **46.**

Moreno, D. and Aanonsen, S.I. 2007. Stochastic Facies Modelling Using the Level Set Method. In *Extended Abstracts Book of Petroleum Geostatistics2007.* Cascais, Portugal. A18.

Remy, N., Boucher, A., and Wu, J. 2009. *Applied Geostatistics With SGeMS: A User's Guide.* Cambridge University Press.

Reynolds, A.C., Zafari, M., and Li, G. 2006. Iterative Forms of the EnsembleKalman Filter. In *10th European Conference on the Mathematics of Oil Recovery.* Amsterdam, The Netherlands. A030.

Romney, A.K., Shepard, R.N., and Nerlove, S.B. 1972. *Multidimensional Scaling, Theory and Applications in the Behavioral Sciences.* New York:Seminar Press. 2 Vols.

Sammon, J.W. Jr. 1969. A Nonlinear Mapping for Data Structure Analysis.*IEEE Trans.* *on Computers* **c-18** (5): 401-409.

Sarma, P. and Chen, W.H., 2009. Generalization of the Ensemble Kalman Filter Using Kernels for Non-Gaussian Random Fields. Paper SPE 119177* *presentedat the SPE Reservoir Simulation Symposium, The Woodlands, Texas, 2-4 February.http://dx.doi.org/10.2118/119177-MS.

Skjervheim, J.-A., Evensen, G., Aanonsen, S.I. et al. 2007. Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter.*SPE J.* **12** (3): 282-292. http://dx.doi.org/10.2118/95789-PA.

Strebelle, S. 2002a. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. *Math. Geol.* **34** (1):1-22.

Strebelle, S. 2002b. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. *Math. Geol.* **34** (1).

Suzuki, S. and Caers, J. 2008. A Distance-Based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems. *Math. Geosci.* **40** (4): 445-469.

Zhang, T., Switzer, P., and Journel, A. 2006. Filter-Based Classification of Training Image Patterns for Spatial Simulation. *Math. Geol.* **38** (1): 63-80.

Zhao, Y., Reynolds, A.C., and Li, G. 2008. Generating Facies Maps by Assimilating Production Data and Seismic Data With the Ensemble Kalman Filter.Paper SPE 113990 presented at the SPE/DOE Symposium on Improved Oil Recovery,Tulsa, Oklahoma, 20-23 April. http://dx.doi.org/10.2118/113990-MS.* *

Zhou, H., Gomez-Hernandez, J., Franssen, H.-J. H. et al. 2011. An Approach to Handling Non-Gaussianity of Parameters and State Variables in Ensemble Kalman Filtering. *Advances in Water Resources* **34:**844-864.