Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

A New Coal Permeability Prediction Method Based on Experiment and Dimension Analysis

Authors
Zhiming Wang (China University of Petroleum) | Gang Yang (China University of Petroleum) | Jian Zhang (China United Coalbed Methane Co., Ltd)
DOI
https://doi.org/10.2118/162940-PA
Document ID
SPE-162940-PA
Publisher
Society of Petroleum Engineers
Source
SPE Journal
Volume
19
Issue
03
Publication Date
June 2014
Document Type
Journal Paper
Pages
356 - 360
Language
English
ISSN
1086-055X
Copyright
2013. Society of Petroleum Engineers
Disciplines
1.6.9 Coring, Fishing, 5.6.1 Open hole/cased hole log analysis, 5.3.4 Integration of geomechanics in models
Downloads
6 in the last 30 days
467 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 10.00
SPE Non-Member Price: USD 30.00

Summary

This paper aims to investigate the effect of temperature and effectivestress on coal permeability. Through the experiment, we find a reversalphenomenon in which the coal permeability presents different change trends astemperature increases at two sides of the reverse point.

The term "critical effective stress" refers to the effective stress at thereverse point. When effective stress is lower than the critical effectivestress, the outward expansion effect of the coal block caused by grain and gasswell is greater than compaction effect as temperature increases under loweffective stress condition. Therefore, the coal expands primarily outward,which results in fissure opening and permeability increase. When effectivestress is higher than the critical effective stress, high effective stresslimits the coal?s outward expansion. The coal expands inward with increasingtemperature, thus causing fissure closure and permeability decrease.

On the basis of dimension analysis and regression analysis, combined withexperimental data, this paper develops a high-precision semitheoretical coalpermeability model of Qinshui basin in China. Simultaneously, what this paperpresents is a permeability prediction method: measuring coal core permeabilityand performing dimension analysis and regression analysis. With this work done,we can establish a similar permeability model suitable for other target zones.Thus, the analytical method presented in this paper provides a basis for coalpermeability prediction.

File Size  384 KBNumber of Pages   5

References

Civan, F. 2008. Correlation of Permeability Loss by Thermally-InducedCompaction due to Grain Expansion. Petrophysics 49 (4):351-361.

Guo, R., Mannhardt, K., and Kantzas, A. 2008. Laboratory Investigation onthe Permeability of Coal During Primary and Enhanced Coalbed MethaneProduction. J Can Pet Technol 47 (10): 27-32. JCPT Paper No.08-10-27. http://dx.doi.org/10.2118/08-10-27.

Li, Z.Q. and Rong, Q. 2009. Coal permeability experiment research under thecondition of different temperature and stress (in Chinese). Journal of ChinaUniversity of Mining and Technology 38 (4): 523-527.

Robertson, E.P. and Christiansen, R.L. 2007. Modeling LaboratoryPermeability in Coal Using Sorption-Induced Strain Data. SPE Res Eval &Eng 10 (3): 260-269. SPE-97068-PA. http://dx.doi.org/10.2118/97068-PA.

Wang, Z.M. 2010. The Completion Optimization Theory and Application ofComplex Well (in Chinese), 134-159. Beijing, China: Petroleum IndustryPress.

Wang, Z.M. and Zhang, J. 2010. Critical Thickness of a Low Permeable CoalBed for Horizontal Well Production in China. Energy Sources Part A33 (4): 307-316. http://dx.doi.org/10.1080/15567030903030641.

Wang, Z.M., Cui, H., and He, G. 2006. Fluid Mechanics (in Chinese).Beijing, China: Petroleum Industry Press.

Zhu, W.C., Wei, C.H., Liu, J. et al. 2011. A model of coal-gas interactionunder variable temperatures. Int. J. Coal Geol. 86 (2-3):213-221. http://dx.doi.org/10.1016/j.coal.2011.01.011.

    • Issue Preprint
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 06
    • Issue 05
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
    • Issue 04
    • Issue 03
    • Issue 02
    • Issue 01
Show more

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in