Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

An Effective Numerical Model for Fracture-Stimulated Condensate Reservoir Production History Matching, Surveillance, and Prediction

Authors
Xinli Jia (Halliburton) | Andrey Filippov (Halliburton) | Vitaly Khoriakov (Halliburton) | Timothy McNealy (Halliburton)
DOI
https://doi.org/10.15530/URTEC-2016-2461289
Document ID
URTEC-2461289-MS
Publisher
Unconventional Resources Technology Conference
Source
SPE/AAPG/SEG Unconventional Resources Technology Conference, 1-3 August, San Antonio, Texas, USA
Publication Date
2016
Document Type
Conference Paper
Language
English
ISBN
000-0-00000-000-0
Copyright
2016. Unconventional Resources Technology Conference
Downloads
0 in the last 30 days
48 since 2007
Show more detail
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

The development of unconventional hydrocarbons has become a significant resource, leading to growth of worldwide oil and natural gas supplies. Hydraulic fracturing has been successfully employed for unconventional oil and gas recovery for decades. In recent years, the rapid progress of technology has led to reduced gas prices and a shift in focus to liquid extraction.

However, liquid flow, both in the wellbore and channels inside porous media or fractures, experiences more resistance compared to gas, resulting in significant pressure losses in the wellbore and fractures. Reservoir productivity also becomes more complex because of relative permeability effects. Forecasting production and estimating shale reserves is still not fully understood because of the limited knowledge of flow mechanics in ultralow-permeability rock.

Many analytical, semi-analytical, and numerical models have been developed to better understand flow in ultralow-permeability rocks and hydraulic fractures. Because analytical models only apply to mostly dry gas reservoirs, numerical reservoir simulation is generally believed to be the most rigorous and accurate method for liquid-rich formations. However, the drawbacks of using reservoir simulation are substantial. Some examples include the significant data requirements, level of expertise required to set up the model, and the demanding turnaround times for meeting the design, optimization, and decision-making cycle deadlines. Also, because each engineer is responsible for a large number of wells, full-scale three-dimensional (3D) reservoir modeling is impossible for a majority of wells.

Therefore, an approach is required that is less time-consuming than detailed reservoir simulation while still being sufficiently accurate to capture the physics of the process. It should be based on numerical modeling of multiphase flow in the interconnecting system of the wellbore and fractures, with the reservoir represented by a productivity index (PI) inflow model, as well as a physics-based pressure-volume-temperature (PVT) model for phase transition and phase equilibrium. The production decline and prediction should be analyzed based on reservoir depletion, relative permeabilities, and fracture conductivities.

This paper describes a numerical fracture production model (FPM) based on the previously mentioned physics that can be used to simulate production resulting from reservoir depletion and analyze historical production data. The outcome of the model focuses on a few primary input parameters that are dedicated to predicting future production and quickly analyzing the parametric effects and economic value of fracture-stimulated condensate reservoirs. The model is validated using two commercially available software programs, as well as historical production data of an Eagle Ford play. The outputs are then used for history matching, sensitivity analysis, parameter optimization, and future production prediction.

File Size  963 KBNumber of Pages   11

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in