Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Unconventional Advanced High-Performance Micromaterial for Enhancing Drilling-Mud Cleaning Performance of Spacer Fluids in Horizontal Wells: From Laboratory Development to Field Applications

Authors
Roderick Pernites (BJ Services) | Jason Brady (BJ Services) | Felipe Padilla (BJ Services) | Jordan Clark (BJ Services) | Caitlin McNeilly (BJ Services) | Waqas Iqbal (BJ Services) | Juan Lacorte (BJ Services) | Eduardo Gonzalez (BJ Services) | Mark Embrey (BJ Services)
DOI
https://doi.org/10.15530/urtec-2019-60
Document ID
URTEC-2019-60-MS
Publisher
Unconventional Resources Technology Conference
Source
SPE/AAPG/SEG Unconventional Resources Technology Conference, 22-24 July, Denver, Colorado, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. Unconventional Resources Technology Conference
Disciplines
Keywords
Downloads
4 in the last 30 days
47 since 2007
Show more detail
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

Delivering a competent cement seal to provide wellbore zonal isolation for maximizing production is highly dependent on mud removal, which remains the perennial challenge. Non-aqueous mud is preferred during drilling to avoid formation swelling and for HTHP wells, but it is highly incompatible with aqueous-based cement fluid. More challenging, non-aqueous mud is customarily recycled and reused in multiple wells, contaminating it heavily and making it difficult to clean by many conventional spacers.

This paper presents a full-scale laboratory development to a successful field application of an unconventional spacer with a novel micromaterial that enhances mud removal and provides exceptional fluid stability (flat viscosity), important for long horizontals. Due to its differentiating chemistry combined with uniquely engineered physical properties (minimally abrasive yet non-damaging to equipment), the new micromaterial allows more efficient scouring of strongly adhered mud from casing/formation surfaces, which many traditional spacers have difficulty removing efficiently.

To demonstrate efficient mud removal, numerous standard rotor cleaning tests were performed with different muds from across North America. Free water and HPHT dynamic settling tests were used to evaluate thermal stability of the spacer. Wettability and API compatibility tests were completed. XRD and SEM analyses were used to characterize and understand the unique properties of the novel micromaterials that contribute to enhanced mud cleaning. First field application was successfully completed in the Permian Basin. Field trial has proven the new spacer (11.3 ppg design with 134 bbl total volume) to be highly stable when pumping down (5 bbl/min) into a wellbore of over 20,000 ft (6096 m) depth with ~12,000 ft (~3658 m) horizontal and 139°F (59°C) BHCT. Most of the oil-based mud used during drilling was recovered.

File Size  1 MBNumber of Pages   16

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in