Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Unsupervised Machine Learning Applications for Seismic Facies Classification

Authors
Satinder Chopra (TGS Canada) | Kurt J. Marfurt (The University of Oklahoma, Norman)
DOI
https://doi.org/10.15530/urtec-2019-557
Document ID
URTEC-2019-557-MS
Publisher
Unconventional Resources Technology Conference
Source
SPE/AAPG/SEG Unconventional Resources Technology Conference, 22-24 July, Denver, Colorado, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. Unconventional Resources Technology Conference
Downloads
5 in the last 30 days
81 since 2007
Show more detail
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

The size of the individual seismic surveys has increased over the last decade, along with the generation of megamerge and even larger, what some operators call “gigamerge” surveys. The number of useful attribute volumes has also increased, such that interpreters may need to integrate terabytes of data. During the past several years, various machine learning methods including unsupervised, supervised and deep learning have been developed to better cope with such large amounts of information. In this study we apply several unsupervised machine learning methods to a seismic data volume from the Barents Sea, on which we had previously interpreted shallow high-amplitude anomalies using traditional interactive interpretation workflows. Specifically, we apply k-means, principal component analysis, self-organizing mapping and generative topographic mapping to a suite of attributes and compare them to previously generated P-impedance, porosity and Vclay displays, and find that self-organized mapping and the generative topographic mapping provide additional information of interpretation interest.

Introduction

In the late 1980s, seismic facies analysis was carried out on 2D seismic data by visually examining the seismic waveforms that can be characterized by their amplitude, frequency and phase expression. Such information would be posted on maps and contoured to generate facies maps. As seismic data volumes increased in size with the adoption of 3D seismic data in the early 1990s, interpreters found that 3D seismic attributes highlighted patterns that facilitated the human recognition of geologic features on time and horizon slices, thereby both accelerating and further quantifying the interpretation. More recently, computer-assisted seismic facies classification techniques have evolved. Such methods or workflows examine seismic data or their derived geometric, spectral, or geomechanical attributes and assign each voxel to one of a finite number of classes, each of which is assumed to represent seismic facies. Such seismic facies may or may not represent geologic facies or petrophysical rock types. In this workflow, well log data, completion data, or production data are then used to determine if a given seismic facies is unique and should be lumped (or “clustered”) with other similar facies determined from attributes with similar attribute expression.

File Size  273 KBNumber of Pages   8

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in