Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Effect of Nanoparticles and Surfactants on Oil/Water Interfacial Tension: A Coarse-Grained Molecular Dynamics Simulation Study

Authors
Chuncheng Li (University of North Dakota) | Hui Pu (University of North Dakota) | Shaojie Zhang (University of North Dakota) | Julia Zhao (University of North Dakota)
DOI
https://doi.org/10.15530/urtec-2019-246
Document ID
URTEC-2019-246-MS
Publisher
Unconventional Resources Technology Conference
Source
SPE/AAPG/SEG Unconventional Resources Technology Conference, 22-24 July, Denver, Colorado, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. Unconventional Resources Technology Conference
Downloads
5 in the last 30 days
73 since 2007
Show more detail
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

The utilization of synergistic mixtures of nanoparticles (NPs) and surfactants for enhanced oil recovery (EOR) has drawn increasing scientific attention. In this study, a series of coarse-grained (CG) molecular dynamics (MD) models were built to study the behaviors of NPs and surfactants in the vicinity of the oil/water interface. Hydrophilic, hydrophobic, and amphiphilic NPs were constructed to investigate the effect of hydrophobicity on the ability of NPs in term of interfacial tension (IFT) reduction. The synergistic effect of surfactants and NPs were also studied.

Surfactants and amphiphilic NPs can both accumulate at the interface of oil and water, while hydrophilic and hydrophobic NPs stay in water or oil phase. The NPs with various ratios of hydrophobic to hydrophilic domains were investigated to determine the types of NPs that result in the most IFT reduction. The comparison of IFTs indicates that amphiphilic NPs has a better ability to assist surfactants in further reducing the interfacial tension. Meanwhile, surface modification and the presence of surfactants can prevent the aggregation of NPs.

These MD simulation results allow us to figure out the physical behavior of NPs and surfactants at the oil/water interfaces. Analysis of the results can further assist the NPs synthesis for surfactant and/or surfactant-nanoparticle EOR applications in unconventional reservoirs.

Introduction

Enhanced Oil Recovery (EOR) is well known for its potential to produce residual oil after the primary and secondary oil recovery. The residual oil is trapped in the narrow throat due to high capillary pressure, which is influenced by rock wettability and oil/water interfacial tension (IFT) (Wu et al., 2008). Surfactants have been widely investigated and employed in the EOR process to reduce the IFT and to alter the wettability (Sheng et al. 2015; Kamal et al., 2017; Negin et al., 2017). However, during the surfactant flooding, surfactants can adsorb onto the rock surfaces. This may result in the reduction of their concentrations, which significantly reduce the efficiency of surfactants in practical applications. The high cost of surfactants also makes this potential loss a critical issue. Many researchers have focused their studies on reducing the adsorption of surfactants by adding various materials in the chemical formulations.

File Size  1 MBNumber of Pages   11

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in