Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Far-Field Proppant Imaging Offsetting Depletion: A STACK Case History

Authors
Kyle Haustveit (Devon Energy) | Mouin Almasoodi (Devon Energy) | Wadhah Al-Tailji (CARBO Ceramics Inc.) | Souvik Mukherjee (CARBO Ceramics Inc.) | Terry Palisch (CARBO Ceramics Inc.) | Rusty Barber (Formerly Devon Energy)
DOI
https://doi.org/10.15530/urtec-2019-1035
Document ID
URTEC-2019-1035-MS
Publisher
Unconventional Resources Technology Conference
Source
SPE/AAPG/SEG Unconventional Resources Technology Conference, 22-24 July, Denver, Colorado, USA
Publication Date
2019
Document Type
Conference Paper
Language
English
Copyright
2019. Unconventional Resources Technology Conference
Downloads
7 in the last 30 days
98 since 2007
Show more detail
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

What is the number one problem with hydraulic fracturing and the frustrations that haunt every completions engineer? Our inability to see what is going on downhole during and after a hydraulic fracture stimulation job. This deficiency leads to numerous questions when attempting to optimize well performance and drainage, such as fracture extension, height growth, proppant/fluid volume usage, parent well depletion effects, cluster efficiency, etc. Over the years, several technologies have been used in an attempt to answer these questions including fiber optic, micro-seismic, chemical and proppant tracers, pressure matching and modeling. However, to date, none have been able to answer the most basic (and some would argue most important) question of all: where is the proppant located in the far-field?

A novel method that is gaining traction to answer this question is the use of electromagnetic (EM) technology to detect electrically conductive proppant. In this technology, a surface EM array is deployed and the EM field is measured both before and after the electrically-conductive proppant has been placed. Advanced modeling is then used to invert the before- and after-frac response to locate the proppant.

This paper will briefly review the technology as well as the motivation for deploying the process in one operator's STACK development. The paper will then thoroughly review a case history, where this EM proppant detection method was used in two offset infill wells in the STACK (Sooner Trend Anadarko Canadian and Kingfisher counties) play of Oklahoma. The two new wells were selected to be near the parent wellbore, where depletion effects were expected to impact both wells. The primary purpose of the project was to understand the impact the parent well had on an infill stimulation design.

Proppant maps will be presented which address the impact of the parent well depletion on the bi-wing fracture growth. Other complementary technologies will be presented including surface pressure monitoring of offset wells. This technology was also deployed previously in an area vertical science well and where applicable, these results will be included.

This paper will be useful for engineers, geoscientists and other technicians who wrestle with how to effective place their infill wells and design their fracture stimulations, with the goal of optimally depleting their acreage.

File Size  1 MBNumber of Pages   21

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in