Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Pore-Scale Evaluation of Dielectric Measurements in Formations With Complex Pore and Grain Structures

Authors
Huangye Chen (Texas A&M University) | Zoya Heidari (Texas A&M University)
Document ID
SPWLA-2014-NNNN
Publisher
Society of Petrophysicists and Well-Log Analysts
Source
SPWLA 55th Annual Logging Symposium, 18-22 May, Abu Dhabi, United Arab Emirates
Publication Date
2014
Document Type
Conference Paper
Language
English
Copyright
2014. held jointly by the Society of Petrophysicists and Well Log Analysts (SPWLA) and the submitting authors
Downloads
3 in the last 30 days
331 since 2007
Show more detail
Price: USD 10.00

Abstract

Dielectric permittivity measurements are typically used to estimate water-filled porosity, since water’s dielectric permittivity is bigger than the permittivity of other constituents of the rock. The dielectric interpretation methods such as Complex Refractive Index Model (CRIM) (i.e., known as volumetric techniques) are extensively used to correlate dielectric permittivity of the fluid-bearing rocks to petrophysical properties such as porosity and water-filled porosity. However, volumetric techniques usually oversimplify the rock structure. These techniques do not take into account the impact of complex pore structure and spatial distribution of solid and fluid components on dielectric properties of the rock. The lack of reliable rock physics models to interpret dielectric permittivity measurements can lead to huge uncertainty in estimates of water-filled porosity.

This paper introduces a pore-scale numerical simulation method to quantify the impact of pore and grain structures and heterogeneity on dielectric permittivity measurements, and a new method to improve assessment of water-filled porosity in formations with complex pore/grain structure using dielectric measurements. In order to quantify the structure of pore and grain networks, we introduce the directional tortuosity factor and investigate the correlation between the directional tortuosity and the corresponding dielectric permittivity.

We applied the introduced techniques on three-dimensional (3D) computed tomography (CT) scan images of sandstone and carbonate core samples and synthetic organic-rich source rocks. We showed that our modified CRIM method is more reliable in sandstone and carbonate formations for the assessment of fluid saturation, compared to the conventional CRIM method. In the case of synthetic organic-rich source rocks, we observed that (a) the presence of kerogen affects the dielectric permittivity measurements, but it does not significantly affect estimates of water-filled porosity, and (b) the presence of pyrite and its spatial distribution significantly affect the dielectric permittivity of organic-rich source rocks, and failure to consider the influence of pyrite and its spatial distribution on dielectric permittivity will cause large uncertainty in estimates of water-filled porosity.

File Size  369 KBNumber of Pages   13

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in