Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

New Iterative Coupling Between a Reservoir Simulator and a Geomechanics Module

Authors
David Tran (Computer Modelling Group Ltd.) | Antonin Settari (University of Calgary) | Long Nghiem (Computer Modelling Group Ltd.)
DOI
https://doi.org/10.2118/78192-MS
Document ID
SPE-78192-MS
Publisher
Society of Petroleum Engineers
Source
SPE/ISRM Rock Mechanics Conference, 20-23 October, Irving, Texas
Publication Date
2002
Document Type
Conference Paper
Language
English
ISBN
978-1-55563-953-2
Copyright
2002. Society of Petroleum Engineers
Disciplines
4.1.5 Processing Equipment, 2.2.2 Perforating, 5.5 Reservoir Simulation, 5.3.2 Multiphase Flow, 2.4.3 Sand/Solids Control, 1.2.3 Rock properties, 5.1.10 Reservoir Geomechanics, 5.3.4 Integration of geomechanics in models, 1.2.2 Geomechanics, 5.3.1 Flow in Porous Media, 4.1.2 Separation and Treating, 5.8.5 Oil Sand, Oil Shale, Bitumen, 5.4.6 Thermal Methods, 5.2 Reservoir Fluid Dynamics, 3.2.5 Produced Sand / Solids Management and Control
Downloads
2 in the last 30 days
685 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 8.50
SPE Non-Member Price: USD 25.00

Abstract

Interactions of solid mechanics and fluid flow have been studied by numerous researchers for the past several years. Different methods of coupling such as full coupling, iterative coupling, etc., have been used. Nevertheless, the accuracy and the large run time of the coupled solid-mechanics fluid-flow model are outstanding issues that prevent the application of the coupled model in full-field studies. In this work, a novel relationship of porosity as a function of pressure, temperature and mean total stress is developed for iterative coupling of stress and flow. The new formula not only improves the accuracy of the coupling, but also reduces substantially the number of coupling iterations. The latter feature decreases significantly the CPU time. The new approach was implemented in a modular, iteratively coupled system. The rapid convergence provides the equivalent of a fully coupled method that is necessary to investigate complex coupled problems. The main advantage of this type of coupling is that a geomechanics module can be easily coupled with different reservoir simulators. The paper gives some comparisons of results obtained by the new porosity formula with another formulation.

Introduction

Reservoir simulation has a long history of development and it is used to model a wide variety of reservoir problems. However, using a conventional simulator still cannot explain some phenomena that occur during production such as subsidence, compaction, casing damage, wellbore stability, sand production, etc.1,2,3. Most conventional reservoir simulators do not incorporate stress changes and rock deformations with changes in reservoir pressure and temperature during the course of production. The physical impact from these geomechanical aspects of reservoir behavior is not small. For example, pore reduction or collapse leads to abrupt compaction of the reservoir rock, which in turn causes subsidence at the ground surface and damage to well casings. There are many reported cases of environmental impact due to fluid withdrawal from the subsurface. Well known examples include the sea floor subsidence in the Ekofisk field or Valhall field in the North Sea4; subsidence over a large area in the Long Beach Harbor, California5 or in the regions of the Bolivar Coast and Lagunillas in Venezuela6. In addition, production loss due to casing damage can be significant (e.g., in the Belridge Diatomite field in California7).

The fundamentals of geomechanics are based on the concept of effective stress formulated by Terzaghi in 19368. Based on the concept of Terzaghi's effective stress, Biot9 investigated the coupling between stress and pore pressure in a porous medium and developed a generalized three-dimensional theory of consolidation. Skempton10 derived a relationship between the total stress and fluid pore pressure under undrained initial loading through the so-called Skempton pore pressure parameters A and B. Geerstma11 gave a better insight of the relationship among pressure, stress and volume. Van der Knaap12 extended Geertsma's work to nonlinear elastic geomaterials. Nur and Byerlee13 proved that the effective stress law proposed by Biot is more general and physically sensible than that proposed by Terzaghi. Rice and Clearly14 solved poroelastic problems by assuming pore pressure and stress as primary variables instead of displacements as employed by Biot. Yet, all the above work has been limited to the framework of linear constitutive relations and single-phase flow in porous media. Rapid progress in computer technology in recent years has allowed the tackling of numerically more challenging problems associated with nonlinear materials and multiphase flow. Due to the complexity of the solutions of multiphase flow and geomechanics models themselves, the solution of the coupled problem is even more complicated and needs further study to improve accuracy, convergence, computing efficiency, etc. In particular, researchers have been debating which coupling approach is best for computing fluid-solid interactions. The term ‘interaction' is understood here as the mechanical force effect rather than the chemical reaction effect between fluid and solid.

File Size  449 KBNumber of Pages   10

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in