Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Characterization of Conductive Fractures While Drilling

Authors
F. Sanfillippo (Agip S.p.A.) | M. Brignoli (Agip S.p.A.) | F.J. Santarelli (Agip S.p.A.) | C. Bezzola (Geolog s.r.l.)
DOI
https://doi.org/10.2118/38177-MS
Document ID
SPE-38177-MS
Publisher
Society of Petroleum Engineers
Source
SPE European Formation Damage Conference, 2-3 June, The Hague, Netherlands
Publication Date
1997
Document Type
Conference Paper
Language
English
ISBN
978-1-55563-405-6
Copyright
1997. Society of Petroleum Engineers
Disciplines
5.8.6 Naturally Fractured Reservoir, 4.1.9 Tanks and storage systems, 1.6.9 Coring, Fishing, 1.14 Casing and Cementing, 1.6 Drilling Operations
Downloads
1 in the last 30 days
515 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

When dealing with naturally fractured formations, the knowledge of the location and the permeability of the fractures intersecting the wellbore has a strong technical and economical impact upon drilling, production and reservoir management strategies. This paper presents a methodology which allows to perform a real time characterization of the conductive fractures intercepted by the bit while drilling. Such fractures are detected by monitoring continuously the mud losses at the rigsite using flow-meters measuring both the ingoing and the outgoing mud flow. The accuracy of such measurements is very high (mud losses as small as 20 liters can be monitored), and therefore also the smallest conductive fractures can be pinpointed.

A simple analytical model describing the mud invasion into a single fracture is used to invert the mud loss data in order to estimate the aperture and permeability of each fracture. This model has been validated with core measurements, and it is used in real time to perform a quick but sufficiently precise analysis.

The application of this technique to several field cases is also illustrated and discussed in terms of:

1. interpretation of the process of fracture plugging;

2. real time evaluation of the hydraulic aperture of the conductive fractures;

3. generation of a "secondary permeability log".

Moreover some operative implications are discussed, such as:

1. in the field of drilling, the muds, the lost circulation materials (LCM) and the cement plugs can be selected properly in order to avoid massive circulation losses and to minimize the damage due to mud invasion;

2. in the field of production engineering, the completion schemes and the stimulation operations can be optimized through the knowledge of the most conductive intervals;

3. in the field of reservoir engineering, a better modeling can be performed and a better exploitation of the naturally fractured reservoirs can be achieved.

Introduction

Detecting mud gains and losses is a standard practice during drilling, as it provides the quickest warning sign of dangers due either to kicks or to massive circulation losses. Moreover, when drilling naturally fractured reservoirs, mud loss data provide one of the most effective means to assess the existence of conductive fractures intercepting the wellbore and therefore to identify potentially producing intervals.

The most used technique is monitoring the level of the mud tanks with floating sensors or acoustic reflectors and measuring the cumulative volume of mud lost over a period of time. In terms of formation characterization, the analysis of such measurements is generally restricted to the detection of the presence of natural conductive fractures within a certain interval and to the qualitative estimation of their conductivity on the basis of the cumulative volume of mud lost. However, they are not accurate enough to be inverted in order to characterize the hydraulic properties of the fractures causing the losses, in fact:

- these measurements cannot discriminate the contribution of each single fracture;

- they measure the cumulative volume lost within a certain interval, which depends not only on the conductivity of the intercepted fractures, but also on other factors, such as the rheological properties of the mud, the fracture density, the overbalance pressure, the plugging capacity of the mud, etc.;

- in the very best situations their accuracy is about 0.5 bbls, and smaller losses (and, consequently, smaller fractures) cannot be detected.

P. 319^

File Size  580 KBNumber of Pages   10

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in