Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Optimizing Drawdown Strategies in Wells Producing from Complex Fracture Networks

Authors
Ashish Kumar (The University of Texas at Austin) | Puneet Seth (The University of Texas at Austin) | Kaustubh Shrivastava (The University of Texas at Austin) | Mukul M. Sharma (The University of Texas at Austin)
DOI
https://doi.org/10.2118/191419-18IHFT-MS
Document ID
SPE-191419-18IHFT-MS
Publisher
Society of Petroleum Engineers
Source
SPE International Hydraulic Fracturing Technology Conference and Exhibition, 16-18 October, Muscat, Oman
Publication Date
2018
Document Type
Conference Paper
Language
English
ISBN
978-1-61399-622-5
Copyright
2018. Society of Petroleum Engineers
Disciplines
0.2 Wellbore Design, 2.4 Hydraulic Fracturing, 2.5.2 Fracturing Materials (Fluids, Proppant), 4.1 Processing Systems and Design, 2 Well completion, 3 Production and Well Operations, 0.2.2 Geomechanics, 4 Facilities Design, Construction and Operation, 3 Production and Well Operations, 4.1.2 Separation and Treating
Keywords
Complex Fracture Network, Fractured Well Productivity, Choke Optimization, Fractured Well Performance, Fracture Closure
Downloads
18 in the last 30 days
789 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 8.50
SPE Non-Member Price: USD 25.00
Abstract

In unconventional reservoirs, the presence of natural fractures coupled with high pore pressures leads to the creation of complex fracture networks. During drawdown, the fracture network experiences large changes in the stresses which can affect the fracture conductivity, and hence the production rate. We present a workflow to find an optimum drawdown strategy in which the fractures can remain conductive while maintaining a high enough drawdown to maximize production.

A fully coupled geomechanical reservoir simulator is developed to simulate production from complex fracture networks. Flow in the fracture and reservoir domains is solved in two separate conforming meshes which are coupled through matrix-fracture transfer indices. The complex fracture network is represented as an explicit discontinuity in the reservoir domain which is essential to capture the stress variations in the vicinity of the fractures due to reservoir depletion and fracture closure. The fracture closure process is modeled dynamically using the Barton-Bandis contact relationship, and the fracture conductivity is determined using the fracture width and proppant concentration. This model is used to study the impact of drawdown strategy on fracture conductivity and well productivity.

It is observed that the estimated ultimate recovery (EUR) from complex fracture networks depends upon the connected fracture conductivity and the applied drawdown. A conservative drawdown strategy maintains the fracture conductivity for a longer period but results in a lower initial production rate. As the drawdown is increased, the unpropped fractures close and can cause a large portion of the fracture network (the part behind the closed segment) to get disconnected from the wellbore. This reduces the available fracture area for production. Although an aggressive drawdown strategy results in higher initial production rates, it can lead to faster fracture closure, in turn resulting in a lower EUR. Impact of drawdown strategy on productivity is analyzed at different fracture closure rates.

We show that the optimum choke management strategy depends on the sensitivity of the fracture conductivity to stress. A coupled geomechanical reservoir model is presented that can simulate production with dynamic fracture closure in complex fracture networks to quantify this effect.

File Size  1 MBNumber of Pages   14

Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983). Fundamentals of rock joint deformation. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 20, No. 6, pp. 249-268). Pergamon.

Barree, R. D., & Mukherjee, H. (1995). Engineering Criteria for Fracture Flowback Procedures. Society of Petroleum Engineers. doi: 10.2118/29600-MS

Bryant, E. C., Hwang, J., & Sharma, M. M. (2015). Arbitrary Fracture Propagation in Heterogeneous Poroelastic Formations Using a Finite Volume-Based Cohesive Zone Model. Society of Petroleum Engineers. doi: 10.2118/173374-MS

Fisher, M. K., Wright, C. A., Davidson, B. M., Goodwin, A. K., Fielder, E. O., Buckler, W. S., & Steinsberger, N. P. (2002). Integrating Fracture Mapping Technologies to Optimize Stimulations in the Barnett Shale. Society of Petroleum Engineers. doi: 10.2118/77441-MS

Fredd, C. N., McConnell, S. B., Boney, C. L., & England, K. W. (2000). Experimental Study of Hydraulic Fracture Conductivity Demonstrates the Benefits of Using Proppants. Society of Petroleum Engineers. doi: 10.2118/60326-MS

Hajibeygi, H., Karvounis, D., & Jenny, P. (2011). A hierarchical fracture model for the iterative multiscale finite volume method. Journal of Computational Physics, 230(24), 8729-8743. https://doi.org/10.1016/j.jcp.2011.08.021

Karantinos, E., Sharma, M. M., Ayoub, J. A., Parlar, M., & Chanpura, R. A. (2016). Choke Management Strategies for Hydraulically Fractured Wells and Frac–Pack Completions in Vertical Wells. Society of Petroleum Engineers. doi: 10.2118/178973-MS

Karimi-Fard, M., Durlofsky, L. J., & Aziz, K. (2004, June 1). An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators. Society of Petroleum Engineers. doi: 10.2118/88812-PA

Kumar, A., Seth, P., Shrivastava, K., Manchanda, R., & Sharma, M. M. (2018). Well Interference Diagnosis through Integrated Analysis of Tracer and Pressure Interference Tests. Unconventional Resources Technology Conference (URTEC).

Kumar, A., & Sharma, M. M. (2018). Diagnosing Fracture-Wellbore Connectivity Using Chemical Tracer Flowback Data. Unconventional Resources Technology Conference (URTEC).

Monteagudo, J. E. P., & Firoozabadi, A. (2004). Control-volume method for numerical simulation of two-phase immiscible flow in two-and three-dimensional discrete-fractured media. Water resources research, 40(7). https://doi.org/10.1029/2003WR002996

Okouma Mangha, V., Guillot, F., Sarfare, M., San, V., Ilk, D., & Blasingame, T. A. (2011). Estimated Ultimate Recovery (EUR) as a Function of Production Practices in the Haynesville Shale. Society of Petroleum Engineers. doi: 10.2118/147623-MS

Robinson, B. M., Holditch, S. A., & Whitehead, W. S. (1988). Minimizing Damage to a Propped Fracture by Controlled Flowback Procedures. Society of Petroleum Engineers. doi: 10.2118/15250-PA

Rojas, D., & Lerza, A. (2018). Horizontal Well Productivity Enhancement through Drawdown Management Approach in Vaca Muerta Shale. Society of Petroleum Engineers. doi: 10.2118/189822-MS.

Seth, P., Kumar, A., Manchanda, R., Shrivastava, K., & Sharma, M. M. (2018a). Hydraulic Fracture Closure in a Poroelastic Medium and its Implications on Productivity. In 52nd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

Seth, P., manchanda, R., Kumar, A., Sharma, M., (2018b). Estimating Hydraulic Fracture Geometry by Analyzing the Pressure Interference Between Fractured Horizontal Wells. Presented in SPE Annual Technical Conference and Exhibition.

Sharma, M. M., & Manchanda, R. (2015). The Role of Induced Un-propped (IU) Fractures in Unconventional Oil and Gas Wells. Society of Petroleum Engineers. doi: 10.2118/174946-MS

Shrivastava, K., Agrawal, S., Kumar, A., Sharma, M.M., (2018). 3-D Interactions of Hydraulic Fracture with Natural Fracture, in: SPE International Hydraulic Fracturing Technology Conference & Exhibition.

Shrivastava, K., & Sharma, M. M. (2018a). Mechanisms for the Formation of Complex Fracture Networks in Naturally Fractured Rocks. In SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers. doi: 10.2118/189864-MS.

Shrivastava, K., & Sharma, M. M. (2018b). Proppant transport in complex fracture networks. In SPE hydraulic fracturing technology conference and exhibition. Society of Petroleum Engineers. doi: 10.2118/189895-MS.

Wang, H., & Sharma, M. M. (2018). Modeling of hydraulic fracture closure on proppants with proppant settling. Journal of Petroleum Science and Engineering, 171, 636-645.

Wang, H., Yi, S., & Sharma, M. M. (2018). A computationally efficient approach to modeling contact problems and fracture closure using superposition method. Theoretical and Applied Fracture Mechanics, 93, 276-287.

Weng, X., Kresse, O., Cohen, C.-E., Wu, R., & Gu, H. (2011). Modeling of Hydraulic-Fracture-Network Propagation in a Naturally Fractured Formation. Society of Petroleum Engineers. doi: 10.2118/140253-PA

Wilson, K., Ahmed, I., & MacIvor, K. (2016). Geomechanical Modeling of Flowback Scenarios to Establish Best Practices in the Midland Basin Horizontal Program. Unconventional Resources Technology Conference. doi: 10.15530/URTEC-2016-2448089

Wu, W., Kakkar, P., Zhou, J., Russell, R., & Sharma, M. M. (2017). An Experimental Investigation of the Conductivity of Unpropped Fractures in Shales. Society of Petroleum Engineers. doi: 10.2118/184858-MS

Xu, Y., Cavalcante Filho, J. S. A., Yu, W., & Sepehrnoori, K. (2017). Discrete-Fracture Modeling of Complex Hydraulic-Fracture Geometries in Reservoir Simulators. Society of Petroleum Engineers. doi: 10.2118/183647-PA

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in