Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Computations of Perforating Shock on an Intelligent Completions Interval Control Valve with Test Validation

Authors
Kevin Harive (Halliburton) | Jonathon Joubran (Halliburton) | Zachary Butler (Halliburton) | Jim Wight (Halliburton) | Gerald Craddock (Halliburton)
DOI
https://doi.org/10.2118/178174-MS
Document ID
SPE-178174-MS
Publisher
Society of Petroleum Engineers
Source
SPE/IADC Middle East Drilling Technology Conference and Exhibition, 26-28 January, Abu Dhabi, UAE
Publication Date
2016
Document Type
Conference Paper
Language
English
ISBN
978-1-61399-409-2
Copyright
SPE/IADC Middle East Drilling Technology Conference and Exhibition.
Disciplines
5.2 Fluid Characterization, 1.6.1 Drilling Operation Management, 4 Facilities Design, Construction and Operation, 1.10 Drilling Equipment, 2.2 Completion Installation and Operations, 2.2.2 Perforating, 5 Reservoir Desciption & Dynamics, 5.2.2 Fluid Modeling, Equations of State, 1.10.1 Drill string components and drilling tools (tubulars, jars, subs, stabilisers, reamers, etc), 4.1.2 Separation and Treating, 2 Well completion, 4.1 Processing Systems and Design
Keywords
perforating, completion, survival, assurance, 3D computations
Downloads
1 in the last 30 days
140 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 8.50
SPE Non-Member Price: USD 25.00
Abstract

With extremely challenging and unforgiving ultradeepwater environments combined with those of high-pressure, high-temperature (HP/HT) reservoirs, the costs associated with not understanding each unique dynamic environment could be very high. The complexities of the hardware systems are akin to human beings' internal systems, involving dependent and independent interactions. When these complex systems are deployed into unforgiving environments without appropriate safeguards/assurances, unforeseen adverse issues will eventually occur.

To help reduce the likelihood of calamitous failures or well completion issues, prejob perforating and well construction simulations have become industry standard. Notwithstanding the utilization of industry accepted models, issues continue to arise. Assurance models that were previously industry-standard lack the complexity of newer, improved systems on the horizon that are better able to quantify the dynamic events experienced in these extremely challenging environments. In essence the modeling technology has not kept pace with the present environments we perforate in.

Understanding and managing stress and shock loads imparted to downhole tools during their full range of operating conditions is critical to the reliability of such tools. In the case of a perforating gun string, the energetic material detonation forces inducesignificant stresses on adjoining tools (Dobratz 1985). This paper discusses the case of a perforating string affecting an adjoining interval control valve (ICV) in the tubing string by a 4 5/8-in. gun system.

One of the most significant stresses experienced by downhole equipment is the loading imparted by the release of energetic material detonation forces during downhole perforating. Knowledge of the dynamic response of downhole perforating gun strings during detonation is critical to the development of better performing gun systems, equipment, and optimal job designs with maximum reliability.

Numerical simulation is central to advancing this understanding, but available simulation tools have generally been limited to hydrodynamics models focused on optimizing shaped charge perforating performance (Han et al. 2010) and to highly simplified string and wellbore models lacking the fidelity required to capture the full system behavior with sufficient accuracy. Limited value of current models has been attributed to the general lack of relevant data needed for proper model calibration and validation.

Approaching the development of a resolute system model that addresses these shortcomings required not only an appropriate treatment of physics throughout the simulation time frame of interest but also the collection of relevant and reliable data with which to calibrate and validate the system model.

A two-pronged software and hardware approach (Craddock et al. 2014) was developed to obtain an accurate picture of the dynamic shock response of the bottomhole assembly (BHA) and wellbore fluids during a detonation event. The finite-element-based simulation software package bridged the gap between existing software tools. It was used in tandem with a new downhole sensing sub that supported the simulation effort by capturing the necessary data to calibrate and validate the software. Key attributes of the sensing sub are it can be run with the detonation event and can measure gun string loads in addition to pressure, acceleration, and temperature. Downhole data collected from multiple field trials was used to evaluate the performance of the sensor sub and simulation software. New surface testing tools and methods were also implemented to support initial model calibration and to verify certain critical aspects of the downhole sensing sub design. The effort has successfully demonstrated the ability to collect high-quality data from within the perforation zone and the ability to accurately simulate string and wellbore dynamics. These are both indispensable capabilities which enable the detailed study of the 3D dynamic response (Glenn et al. 2014) of the ICV in the tubing string by a 4 5/8-in. perforating shaped charge detonating gun system.

The general purpose multiphysics simulation software capable of simulating a wide range of physical events, including structures coupled to fluids, is of interest and is discussed. The principal advantage for results validation is the model will run inside the same environment, and has explicit and implicit solvers. The 3D shock loading finite-elemental analysis (3D SL FEA) contains approximately 100 constitutive models and 10 equations-of-state for material behavior. This is enhanced with the addition of the bolt-on module that can quickly build visualizations to analyze the data using qualitative and quantitative techniques. The data exploration can be done interactively in 3D or programmatically using batch processing capabilities.

File Size  4 MBNumber of Pages   15

Craddock, G.G., Zhang, W., Wight, J.. 2014. Investigating the Dynamic Three-Dimensional Loading Effects on Perforating Guns Imposed by Shaped Charges. Presented at the International Petroleum Technology Conference, Doha, Qatar, 19-22 January. IPTC-17282-MS. http://dx.doi.org/10.2523/IPTC-17282-MS.

Dobratz, B.M. 1985. LLNL explosives handbook. properties of chemical explosives and explosive simulants. Livermore, California: Lawrence Livermore National Laboratory, University of California.

Glenn, T.S., Serra, M., Rodgers, J.P.. 2014. Investigating the Dynamic 3D Loading Effects on Perforating Guns Imposed by Shaped Charges-Downhole Evaluation. Presented at the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 25-28 March. OTC-24891-MS. http://dx.doi.org/10.4043/24891-MS.

Grove, B., Werner A., and Han C. 2006. Explosion-induced Damage to Oilwell Perforating Gun Carriers. In Structures Under Shock and Impact IX, ed. N. Jones and C. A. Brebbia, Sec. 2, 165–176. Southampton, UK: WIT Transactions on The Built Environment, WIT Press.

Johnson, G.R. and Cook, W.H. 1985. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures, and Pressures. Engineering Fracturing Mechanics 21(1): 31–48.

Schatz, J.F., Folse, K.C., Fripp, M.. 2004. High-Speed Pressure and Accelerometer Measurements Characterize Dynamic Behavior During Perforating Events in Deepwater Gulf of Mexico. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 26-29 September. SPE-90042-MS. http://dx.doi.org/10.2118/90042-MS.

Han, C., Du, M.H., and Ference, B. 2010. Effects of Shaped Charge Case Materials on Guns and Perforating. Presented at the International Oil and Gas Conference and Exhibition, Beijing, China, 8-10 June. SPE-130477-MS. http://dx.doi.org/10.2118/130477-MS.

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in