# Application of Flow Diagnostics and Multiscale Methods for Reservoir Management

- Authors
- Knut–Andreas Lie (SINTEF ICT) | Olav Møyner (SINTEF ICT) | Stein Krogstad (SINTEF ICT)
- DOI
- https://doi.org/10.2118/173306-MS
- Document ID
- SPE-173306-MS
- Publisher
- Society of Petroleum Engineers
- Source
- SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas, USA
- Publication Date
- 2015

- Document Type
- Conference Paper
- Language
- English
- ISBN
- 978-1-61399-352-1
- Copyright
- 2015. Society of Petroleum Engineers
- Disciplines
- 5.5 Reservoir Simulation, 5.1.1 Exploration, Development, Structural Geology
- Keywords
- Flow diagnostics, Physics-based proxies, Reservoir management, Optimization, Multiscale methods
- Downloads
- 2 in the last 30 days
- 212 since 2007

- Show more detail
- View rights & permissions

SPE Member Price: | USD 8.50 |

SPE Non-Member Price: | USD 25.00 |

Reservoir simulation workflows contain significant elements of uncertainty, particularly in the geological description of reservoir geometry and petrophysical parameters such as permeability and porosity. To accurately account for uncertainty and span the range of likely outcomes, different equiprobable realizations should be kept as long as possible throughout a modelling workflow. However, working with multiple realizations of the same reservoir for optimization purposes may quickly become prohibitively expensive, particularly since using a full forward simulation can be quite demanding even for a single model realization. Herein, we propose to combine two recent and quite different technologies to enable optimization of multiple realizations. The first is the use of multiscale technology, wherein approximate, but well-behaved pressure solutions can be efficiently computed using precomputed basis functions that capture local flow features. Secondly, the use of single-phase flow diagnostics can serve as an efficient alternative to full physics flow simulations for optimization and characterization purposes. By combining these technologies in a single implementation, we obtain a workflow that makes it possible to quickly evaluate and optimize multiple realizations, while still retaining error control. In particular, it is possible to adjust accuracy dynamically from inexpensive proxy models provided by pure multiscale and flow diagnostics, via more accurate iterated multiscale solutions and incompressible flow, to fully-implicit solvers that incorporate the relevant flow physics.

File Size | 4 MB | Number of Pages | 19 |

### Supporting information

- SUPPLEMENTARY/SPE-173306-SUP.pdf

Aarnes, J. E. 2004. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul., 2(3):421–439. DOI: 10.1137/030600655.

Aarnes, J. E., Kippe, V., and Lie, K.-A. 2005. Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour., 28(3):257–271. DOI: 10.1016/j.advwatres.2004.10.007.

Aarnes, J. E., Krogstad, S., and Lie, K.-A. 2006. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul., 5(2):337–363. DOI: 10.1137/050634566.

Aarnes, J. E., Krogstad, S., and Lie, K.-A. 2008. Multiscale mixed/mimetic methods on corner-point grids. Comput. Geosci., 12(3):297–315. DOI: 10.1007/s10596-007-9072-8.

Alpak, F. O., Pal, M., and Lie, K.-A. 2012. A multiscale method for modeling flow in stratigraphically complex reservoirs. SPE J., 17(4):1056–1070. DOI: 10.2118/140403-PA.

Arbogast, T., Pencheva, G., Wheeler, M. F., and Yotov, I. 2007. A multiscale mortar mixed finite element method. Multiscale Model. Simul., 6(1):319–346. DOI: 10.1137/060662587.

Ates, H., Bahar, A., El-Abd, S., Charfeddine, M., Kelkar, M., and Datta-Gupta, A. 2005. Ranking and upscaling of geostatistical reservoir models using streamline simulation: A field case study. SPE Res. Eval. Eng., 8(1):22–32. DOI: 10.2118/81497-PA.

Babuka, I., Caloz, G., and Osborn, J. 1994. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31(4):945–981. DOI: 10.1137/0731051.

Batycky, R. P., Thieles, M. R., Baker, R. O., and Chugh, S. H. 2008. Revisiting reservoir flood-surveillance methods using streamlines. SPE Res. Eval. Eng., 11(2):387–394. DOI: 10.2118/95402-PA.

Chen, Z. and Hou, T. 2003. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp., 72:541–576. DOI: 10.1090/S0025-5718-02-01441-2.

Eikemo, B., Lie, K.-A., Dahle, H. K., and Eigestad, G. T. 2009. Discontinuous Galerkin methods for transport in advective transport in single-continuum models of fractured media. Adv. Water Resour., 32(4):493–506. DOI: 10.1016/j.advwatres.2008.12.010.

Hajibeygi, H. 2011. Iterative multiscale finite volume method for multiphase flow in porous media with complex physics. PhD thesis, ETH Zurich. DOI: 10.3929/ethz-a-006696714.

Hajibeygi, H. and Tchelepi, H. A. 2014. Compositional multiscale finite-volume formulation. SPE J., 19(2):316–326. DOI: 10.2118/163664-PA.

He, Z., Parikh, H., Datta-Gupta, A., Perez, J., and Pham, T. 2004. Identifying reservoir compartmentalization and flow barriers from primary production using streamline diffusive time of flight. SPE J., 7(3):238–247. DOI: 10.2118/88802-PA.

Hou, T. and Wu, X.-H. 1997. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134:169–189. DOI: 10.1006/jcph.1997.5682.

Izgec, O., Sayarpour, M., and Shook, G. M. 2011. Maximizing volumetric sweep efficiency in waterfloods with hydrocarbon f-f curves. Journal of Petroleum Science and Engineering, 78(1):54–64. DOI: 10.1016/j.petrol.2011.05.003.

Jenny, P., Lee, S. H., and Tchelepi, H. A. 2003. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys., 187:47–67. DOI: 10.1016/S0021-9991(03)00075-5.

Krogstad, S. 2011. A sparse basis POD for model reduction of multiphase compressible flow. In 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-23 February 2011. DOI: 10.2118/141973-MS.

Krogstad, S., Lie, K.-A., Møyner, O., Nilsen, H. M., Raynaud, X., and Skaflestad, B. 2015. Mrst-ad an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas. DOI: 10.2118/173317-MS.

Krogstad, S., Lie, K.-A., Nilsen, H. M., Natvig, J. R., Skaflestad, B., and Aarnes, J. E. 2009. A multiscale mixed finite-element solver for threephase black-oil flow. In SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2-4 February 2009. DOI: 10.2118/118993-MS.

Lallier, F. L., Montouchet, M., Bergey, P., and Vignau, S. 2014. An efficient well test forward model based on the fast marching method – application to geomodel sorting. In ECMOR XIV – 14th European conference on the mathematics of oil recovery. EAGE. DOI: 10.3997/2214-4609.20141869.

Lie, K.-A., Krogstad, S., Ligaarden, I. S., Natvig, J. R., Nilsen, H. M., and Skaflestad, B. 2012. Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci., 16:297–322. DOI: 10.1007/s10596-011-9244-4.

Lie, K.-A., Natvig, J. R., Krogstad, S., Yang, Y., and Wu, X.-H. 2014. Grid adaptation for the Dirichlet–Neumann representation method and the multiscale mixed finite-element method. Comput. Geosci., 18(3):357–372. DOI: 10.1007/s10596-013-9397-4.

Møyner, O., Krogstad, S., and Lie, K.-A. 2014. The application of flow diagnostics for reservoir management. SPE J. accepted, DOI: 10.2118/171557-PA.

Møyner, O. and Lie, K.-A. 2014a. The multiscale finite-volume method on stratigraphic grids. SPE J., 19(5):816–831. DOI: 10.2118/163649-PA.

Møyner, O. and Lie, K.-A. 2014b. A multiscale two-point flux-approximation method. J. Comput. Phys., 275:273–293. DOI: 10.1016/j.jcp.2014.07.003.

Møyner, O. and Lie, K.-A. 2015. A multiscale method based on restriction-smoothed basis functions suitable for general grids in high contrast media. In SPE Reservoir Simulation Symposium held in Houston, Texas, USA, 23-25 February 2015. SPE 173265-MS, DOI: 10.2118/173256-MS.

MRST 2014. The MATLAB Reservoir Simulation Toolbox, version 2014b. http://www.sintef.no/MRST/.

Natvig, J. R. and Lie, K.-A. 2008. Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin schemes with optimal ordering of elements. J. Comput. Phys., 227(24):10108–10124. DOI: 10.1016/j.jcp.2008.08.024.

Natvig, J. R., Lie, K.-A., and Eikemo, B. 2006. Fast solvers for flow in porous media based on discontinuous Galerkin methods and optimal reordering. In Binning, P., Engesgaard, P., Dahle, H., Pinder, G., and Gray, W., editors, Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark.

Natvig, J. R., Lie, K.-A., Eikemo, B., and Berre, I. 2007. An efficient discontinuous Galerkin method for advective transport in porous media. Adv. Water Resour., 30(12):2424–2438. DOI: 10.1016/j.advwatres.2007.05.015.

Natvig, J. R., Skaflestad, B., Bratvedt, F., Bratvedt, K., Lie, K.-A., Laptev, V., and Khataniar, S. K. 2011. Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs. SPE J., 16(4):880–888. DOI: 10.2018/119132-PA.

Park, H.-Y. and Datta-Gupta, A. 2011. Reservoir management using streamline-based flood efficiency maps and application to rate optimization. In Proceedings of the SPE Western North American Region Meeting, 7-11 May 2011, Anchorage, Alaska, USA. DOI: 10.2118/144580-MS.

Rasmussen, A. F. and Lie, K.-A. 2014. Discretization of flow diagnostics on stratigraphic and unstructured grids. In ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014. EAGE. DOI: 10.3997/2214-4609.20141844.

Shahvali, M., Mallison, B., Wei, K., and Gross, H. 2012. An alternative to streamlines for flow diagnostics on structured and unstructured grids. SPE J., 17(3):768–778. DOI: 10.2118/146446-PA.

Sharifi, M. and Kelkar, M. 2014. Novel permeability upscaling method using fast marching method. Fuel, 117, Part A(0):568–578. DOI: 10.1016/j.fuel.2013.08.084.

Sharifi, M., Kelkar, M., Bahar, A., and Slettebo, T. 2014. Dynamic ranking of multiple realizations by use of the fast-marching method. SPE J. DOI: 10.2118/169900-PA.

Shook, G. and Mitchell, K. 2009. A robust measure of heterogeneity for ranking earth models: The F-Phi curve and dynamic Lorenz coefficient. In SPE Annual Technical Conference and Exhibition, 4-7 October, New Orleans, Louisiana. DOI: 10.2118/124625-MS.

Stenerud, V. R., Kippe, V., Lie, K.-A., and Datta-Gupta, A. 2008. Adaptive multiscale streamline simulation and inversion for high-resolution geomodels. SPE J., 13(1):99–111. DOI: 10.2118/106228-PA.

Thiele, M. R. and Batycky, R. P. 2003. Water injection optimization using a streamline-based workflow. In Proceedings of the SPE Annual Technical Conference and Exhibition, 5-8 October 2003, Denver, Colorado. DOI: 10.2118/84080-MS.

Wang, Y., Hajibeygi, H., and Tchelepi, H. A. 2014. Algebraic multiscale solver for flow in heterogeneous porous media. J. Comput. Phys., 259:284–303. DOI: 10.1016/j.jcp.2013.11.024.

Zhang, Y., Yang, C., King, M. J., and Datta-Gupta, A. 2013. Fast-marching methods for complex grids and anisotropic permeabilities: Application to unconventional reservoirs. In SPE Reservoir Simulation Symposium, 18-20 February, The Woodlands, Texas, USA. DOI: 10.2118/163637-MS.