Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Mixing Hydrochloric Acid and Seawater for Matrix Acidizing: Is It a Good Practice?

Authors
Jia He (Texas A&M University) | Ibrahim Mohamed Mohamed (Texas A&M University) | Hisham A. Nasr-El-Din (Texas A&M University)
DOI
https://doi.org/10.2118/143855-MS
Document ID
SPE-143855-MS
Publisher
Society of Petroleum Engineers
Source
SPE European Formation Damage Conference, 7-10 June, Noordwijk, The Netherlands
Publication Date
2011
Document Type
Conference Paper
Language
English
ISBN
978-1-61399-121-3
Copyright
2011. Society of Petroleum Engineers
Disciplines
3.2.4 Acidising, 2.7.1 Completion Fluids, 1.8 Formation Damage, 4.1.2 Separation and Treating, 4.3.4 Scale, 4.2.3 Materials and Corrosion, 1.6.9 Coring, Fishing
Downloads
1 in the last 30 days
475 since 2007
Show more detail
View rights & permissions
SPE Member Price: USD 9.50
SPE Non-Member Price: USD 28.00

Abstract

In offshore operations where seawater is commonly used to prepare hydrochloric acid, calcium sulfate precipitation, the potential of which can greatly reduce the effectiveness of these treatments. This is because high concentration of calcium produced in spent acid mixed with high level of sulfate in seawater. However, a few studies have provided evidence for this problem and the effect of calcium sulfate precipitation on acid treatments has not been fully examined.

In this work, core flood experiments at 0.5, 1, and 5 cm3/min flow rates were performed at 25°C to investigate formation damage due to calcium sulfate precipitation during matrix acidizing treatment. Austin Chalk cores (6 in. length and 1.5 in. diameter) with a permeability of 10 md and synthetic seawater were used. The core permeability before and after acid treatment, pressure drop response, calcium ion, sulfate ion, and pH values in the core effluent samples were measured. Solids collected in the core effluent samples were analyzed using XPS technique. Both acid prepared in seawater and in deionized water were examined.

Results showed that calcium sulfate precipitation occurred when seawater was used in any stage during matrix acidizing including preflush, post-flush, or in the main stage. Injection rate was the most important parameter that affected calcium sulfate precipitation; permeability reduction was significant at low flow rates, while at high rates wormhole breakthrough reduced the severity of the problem. This work confirms the damaging effect of preparing hydrochloric acid using seawater for acid treatments.

Introduction

Formation damage caused by calcium sulfate scale precipitation when formation temperature changes, formation pressure drops, brine salinity changes, or incompatible fluids are introduced into formation is an old and persistent problem in the oil industry (Vetter et al. 1982; Raju and Nasr-El-Din 2004). Scale deposits may occur in the near-wellbore region, tubing, and surface facilities. The consequence therefore could be production equipment failure, increased maintenance cost, and overall decrease in production efficiency (Abu-Khamsin and Ahmad 2005). Prevention of calcium sulfate precipitation requires extensive knowledge of formation mechanisms and inhibition treatment of calcium sulfate scale.

The most common calcium sulfate scale minerals found in the oilfield include anhydrite (CaSO4), hemihydrate (CaSO4•1/2H2O) and gypsum (CaSO4•2H2O) (Kan et al. 2005; Schausberger et al. 2009).  Gypsum (CaSO4•2H2O) is the stable form below 45°C while anhydrite (CaSO4) is stable above 93°C (Furby et al. 1967). The interest of this work is Gypsum (CaSO4•2H2O). The solubility of calcium sulfate in brine is influenced by many factors with ion concentration and temperature being the most important ones (Abu-Khamsin and Ahmad 2005).

File Size  523 KBNumber of Pages   19

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in