Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

The Influence of Pre-Existing Weakness Planes in Rock on Hydraulic Fracturing

Authors
Wenbao Zhai (China University of Petroleum) | Jun Li (China University of Petroleum) | Zhaowei Chen (CNPC Engineering Technology R&D Company Limited) | Yingcao Zhou (CNPC Engineering Technology R&D Company Limited)
Document ID
ISRM-ARMS10-2018-035
Publisher
International Society for Rock Mechanics and Rock Engineering
Source
ISRM International Symposium - 10th Asian Rock Mechanics Symposium, 29 October - 3 November, Singapore
Publication Date
2018
Document Type
Conference Paper
Language
English
ISBN
978-981-11-9003-2
Copyright
2018. International Society for Rock Mechanics and Rock Engineering / Society for Rock Mechanics and Engineering Geology
Keywords
Shear Dilatation, Hydraulic Fracturing, Shear Slip, Weakness Planes
Downloads
4 in the last 30 days
21 since 2007
Show more detail
Price: USD 20.00

Abstract

Many weakness planes (such as faults, joints, and micro-fractures, etc.) are usually pre-existed in rock. However, the stress statement changed by hydraulic fracture (HF) propagation may have an important impact on hydraulic fracturing, which is closely related to stress statement of weakness planes. Firstly, the rock samples containing the pre-existing weakness planes were analyzed according to the curves of volumetric strain versus stress difference acquired by laboratory experiment. Secondly, the effective normal stress and shear stress of weakness planes were calculated by the tensor transformation method. And then, weakness planes were divided into four kinds according to the relationship between stress statements of weakness planes and failure lines of Mohr diagram and the kinds of weakness planes were visually described in the Mohr diagram. Finally, it was respectively discussed that pre-existing weakness planes did have an influence on hydraulic fracturing under different stress statements. The research results show that when the effective stress is more than zero, with the effective stress decrease, weakness planes are the more easily inclined to become the dilatation phenomenon where the self-propping effect can improve the reservoirs permeability due to surface asperities of weakness planes. However, there are very complex mechanical phenomena induced by weakness planes under higher effective stress. When hydraulic fractures encounter the pre-existing weakness planes under the approximate stress statement, it may be easy to occur shear slipping of weakness planes or it is difficult to be opened by hydraulic fractures. The latter is extremely beneficial to not become the maximum simulated reservoir volume (SRV) and should be avoided by fracturing operation as early as possible. It is somewhat different that the influence of different mechanical phenomena on hydraulic fracturing, which has a certain guidance for improving hydraulic fracturing stimulation.

1. Introduction

Compared to the conventional oil and gas resources, there is usually not natural production in unconventional oil and gas resources, and it needs to rely on hydraulic fracturing to improve development effectiveness (Shrivastava and Sharma, 2018). The complex fracture networks may be created in hydraulic fracturing, which is a combination of shear and tensile failures (Lin et al., 2018). The shear failure of weakness planes (such as faults, joints, and micro-cracks, etc.) resulted in long-term geological tectonic movement is anticipated to dominate in hydraulic fracturing. However, it is a fact that rock dilatation may be caused by rock plastic behavior that the horizontal stress is balanced by the pressure near the fractures tip in hydraulic fracturing (Alko and Economides, 1995). With the development of unconventional oil and gas resources, these weakness planes are a double-edged sword that they can act as a good oil and gas flowing channel, but they can also lead to hydraulic fracturing failure (Ye, 2017). Therefore, it is necessary that considering the role of weakness planes in hydraulic fracturing will be used to optimize the hydraulic fracturing design.

File Size  2 MBNumber of Pages   12

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in