Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

The Effect of Radial Cracking on the Integrity of Asperity Under Thermal Cooling Process

Authors
Chao Zeng (Missouri University of Science and Technology) | Wen Deng (Missouri University of Science and Technology)
Document ID
ARMA-2018-499
Publisher
American Rock Mechanics Association
Source
52nd U.S. Rock Mechanics/Geomechanics Symposium, 17-20 June, Seattle, Washington
Publication Date
2018
Document Type
Conference Paper
Language
English
Copyright
2018. American Rock Mechanics Association
Downloads
3 in the last 30 days
26 since 2007
Show more detail
ARMA Member Price: USD 10.00
ARMA Non-Member Price: USD 20.00

ABSTRACT: In geologic formation, the natural fracture as flow conduit is a dominant factor for the subsurface fluid flow. Most of these natural fractures remain open in deep earth mainly through the self-propping by some discrete asperities, the integrity of asperity plays an important role in maintaining the integrity of fractures. The thermo-hydro-mechanical-chemical coupled analysis on asperity integrity is currently prevailing, whereas potential thermos-mechanical failure or damage of asperity is ignored in current analysis. Two potential failure patterns of asperity had been found in our previous research work. This study focuses on the mechanism of one of these two failure patterns: the radial cracking on the top of asperity. An analytical fracture mechanics model is developed to investigate radial cracking. In this paper, the analytical model is firstly compared with previous numerical simulation with comparable results. Then, the effects of two main factors on radial cracking are systematically investigated. Our results show that thermal cooling is the driving force for radial cracking, but overburden pressure could slightly retard this cracking process. Finally, cracking conditions based on combined effects of thermal cooling and overburden loading are provided. The analytical model can assist assessment of asperity failure when subjected to thermal stress.

1. INTRODCUTION

Fracture as a major factor which greatly affect the fluid flow, heat recovery, colloid transport in environmental remediation, geothermal exploitation, and oil production. These natural and/or man-made fractures are mainly propped by nominal contact of uneven surfaces unless proponents are used. These discrete contacting roughness on fracture surfaces are called asperities. The importance of fractures on hydraulic transmissivity, flow channeling and heat recovery efficiency in fractures has long been acknowledged in areas such as the water flooding for secondary oil recovery (Settari and Warren, 1994; Koutsabelouli and Hope, 1998), the heat extraction in geothermal energy development (Watanabe et al., 2008; Caulk et al., 2016), and the high-level radioactive waste disposal storage (Pyrack-Nolte et al., 1987; Pruess et al., 1990). The integrity of asperity is essentially important in controlling fracture apertures in geological formation.

File Size  939 KBNumber of Pages   9

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in