Please enable JavaScript for this site to function properly.
OnePetro
  • Help
  • About us
  • Contact us
Menu
  • Home
  • Journals
  • Conferences
  • Log in / Register

Log in to your subscription

and
Advanced search Show search help
  • Full text
  • Author
  • Company/Institution
  • Publisher
  • Journal
  • Conference
Boolean operators
This OR that
This AND that
This NOT that
Must include "This" and "That"
This That
Must not include "That"
This -That
"This" is optional
This +That
Exact phrase "This That"
"This That"
Grouping
(this AND that) OR (that AND other)
Specifying fields
publisher:"Publisher Name"
author:(Smith OR Jones)

Distribution and Properties of Faults and Fractures in Shales: Permeability Model and Implications for Optimum Flow Stimulation by Hydraulic Fracturing

Authors
J. H. TerHeege (TNO Petroleum Geosciences)
Document ID
ARMA-2016-363
Publisher
American Rock Mechanics Association
Source
50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 June, Houston, Texas
Publication Date
2016
Document Type
Conference Paper
Language
English
Copyright
2016. Not subject to copyright. This document was prepared by government employees or with government funding that places it in the public domain.
Downloads
5 in the last 30 days
175 since 2007
Show more detail
Get PDF

Abstract:

The spatial distribution of reactivated fractures and fracture permeability after stimulation are key controlling factors that determine typical drainage areas, shale to well connectivity, and hydrocarbon flow rates in fractured shales. In this paper, the influence of fault and fracture populations on the permeability of fractured shales is studied using an analytical model and field data of fault and fracture populations derived from a 3D seismic survey covering the Posidonia Shale Formation in the West Netherlands Basin. The analytical model incorporates fault and fracture populations and describes the permeability of fractured shales using 3D permeability tensors for layered shale matrix, damage zone and fault core of fault zones. A model sensitivity analysis shows that bulk permeability can vary considerably, depending on permeability anisotropy in the matrix, damage zone and fault core, the orientation of matrix layers and damage zone fractures, and the location relative to the fault core. The field data shows the distribution of fault sizes and displacements and associated model input parameters in comparison to typical fault scaling relations from literature. Implications of the analysis for optimum well planning and flow stimulation using hydraulic fracturing in naturally fractured shales are given.

Introduction

In many prospective shales, hydrocarbon production is determined by the distribution and properties of natural faults and fractures (Gale and Holder, 2010; King, 2010). The spatial distribution of reactivated fractures and fracture permeability after stimulation are key controlling factors that determine typical drainage areas, shale to well connectivity, and hydrocarbon flow rates. Fault and fracture populations, orientations, and permeability have been analysed in studies of seismic surveys, outcrop analogues, core material, and laboratory experiments (Odling et al., 1999; Bonnet et al., 2001; Torabi and Berg, 2011). Data from these studies can be used to characterize fault and fracture populations, and describe permeability of fractured shales for areas with limited available data (TerHeege and DeBruin, 2015a). Also, natural faults and fractures are not generally incorporated in conventional hydraulic fracturing simulators that are based on tensile opening of induced fractures (e.g., Meyer and Bazan, 2011). Knowledge on typical distribution and properties of natural faults and fractures can therefore help optimizing flow stimulation by hydraulic fracturing.

Reservoir-scale fault zones generally exhibit a specific architecture with a fault core and damage zone, surrounded by intact reservoir rock (Caine et al., 1996).

This architecture will determine the permeability in the vicinity of fault zones (Mitchell and Faulkner, 2012). Considering the importance of the distribution of faults and fractures in determining stimulated reservoir volume and gas production, it is important to better describe permeability in faulted and fractured shales and incorporate this description in models of gas flow.

File Size  1 MBNumber of Pages   13

Other Resources

Looking for more? 

Some of the OnePetro partner societies have developed subject- specific wikis that may help.


 


PetroWiki was initially created from the seven volume  Petroleum Engineering Handbook (PEH) published by the  Society of Petroleum Engineers (SPE).








The SEG Wiki is a useful collection of information for working geophysicists, educators, and students in the field of geophysics. The initial content has been derived from : Robert E. Sheriff's Encyclopedic Dictionary of Applied Geophysics, fourth edition.

  • Home
  • Journals
  • Conferences
  • Copyright © SPE All rights reserved
  • About us
  • Contact us
  • Help
  • Terms of use
  • Publishers
  • Content Coverage
  • Privacy
  Administration log in